“Unfortunately, I am unable to offer a refund for the product. I understand your dissatisfaction, but our policy clearly states that once the item has been opened, we cannot accept returns. We always strive to provide excellent products and exceptional customer service. Please let us know if there’s anything else we can assist you with.”
P-cores are powerful cores and mainly used for traditional CPU work instructions. E-cores are economical cores and are mainly used for minor tasks running in the background.
This guide will explore the concept of P-cores and E-cores on recent Intel CPUs, and how they differ from traditional CPU core architectures.
In summary, P-cores are designed for conventional CPU work instructions, while E-cores handle all the other minor tasks in the background. When combined, they offer cutting-edge multitasking capabilities similar to smartphones, but are considerably more powerful.
If you are inquisitive about the nature of their design, or if they are really essential compared to traditional mobile big-little cores, follow the rest of this article.
Table of ContentsShow
Background Development Of P-Cores And E-Cores

Intel’s 12th-gen processors, also known as Alder Lake brought several architectural improvements, as well as officially leaving the 14nm+ process node to the new 10nm Enhanced SuperFin, renamed as Intel 7.
Incorporating two types of cores was part of its fundamental design as a hybrid architecture. This is both a way to push multi-core performance higher while streamlining processes into what Intel refers to as the Thread Director.
The Thread Director is the supervisor, if you will, of the combined P-core/E-core setup of Alder Lake and Raptor Lake CPUs. It utilizes machine learning to arrange tasks and assess which classification of core should handle each instruction at every particular moment.
In theory, this prevents background tasks from using the workflow of the principal P-processors, and can easily be handled by the E-processors without any perceptible delays to the system.
What Do P-Cores Do?

P-cores, or Performance cores, are essentially the conventional cores of a CPU. They handle all of the major tasks of the system, and are made to work when process-demanding software is executed.
Due to being the main bases, they are created to have elevated boost frequencies and are engineered to handle the demanding tasks for the computer. Programs like editing tools, picture processors, and gaming software are typically handled by the P-cores.
For Intel 12th-gen (Alder Lake), the P-cores are constructed using the Golden Cove structure, and are designed for substantially greater IPC (instructions per cycle) than their direct predecessors, Willow Cove (11th-gen mobile) and Cypress Cove (11th-gen desktop).
For Intel 13th-gen (Raptor Lake), the P-cores are constructed using the Raptor Cove structure, which is technically an update of the Golden Cove architecture with slight adjustments in clock frequency, catch, efficiency, and a new dynamic prefetch algorithm.
What Do E-Cores Do?

E-cores, or Efficiency cores, are additional cores made to handle everything else that the Thread Director deems less of a priority for P-cores to handle.
The majority of background processes of a computer’s operating system are included in this, although some tasks like minor visual assignments can be assigned to the E-cores based on the overall CPU workload.
Because they are not meant for primary tasks, they have lower boost clocks. Thus, they are generally not advised for gaming applications. They are also built with older architecture, though this is counterbalanced by their smaller die size compared to P-cores (four E-cores can fit into the space of a single P-core).
For the Intel 12th Gen and 13th Gen, the E-cores are constructed using the Gracemont design, which is essentially an update of the Skylake architecture (7th Gen), but compact and more energy-efficient.
Do We Really Need P-Cores And E-Cores?

For most modern tasks, not really.
AMD hasn’t yet replicated Intel or Apple’s architecture, but their Ryzen 5000 and Ryzen 7000 series CPUs can still be efficient.
Certain Intel Alder Lake chips like Core i5-12400 and i3-12100 lack E-cores. Nonetheless, their performance meets the requirements for a modern processor.
In fact, despite minor gains, some committed gamers completely disable E-cores on higher-end Alder Lake and Raptor Lake CPUs.
That being said, the large-small combination structure has proven to be a highly efficient design for more than ten years in portable devices.
It is more than a straightforward case for efficiency, as such architectures have far more comprehensive control in both data processing and power delivery.
And while AMD is yet to develop a hybrid architecture of its own, Intel will push forward to refine the concept for desktops and laptops even further in the expected future.